2.6. Time stepping#
For the semi-discrete system of differential equations of the form
(2.1)#\[\begin{split}\begin{aligned}
\mathbf M_p\partial_t{\mathbf p}&=\mathbf B\mathbf v,\\
\mathbf M_v\partial_t{\mathbf v}&=-\mathbf B^\top\mathbf p,\\
\mathbf p(0)&=\mathbf p_0,\quad {\mathbf v}(0)=\mathbf v_0,
\end{aligned}\end{split}\]
where \(\mathbf M_p,\mathbf M_v\) are the discrete mass matrices and \(\mathbf B\) is the matrix of the discrete differential operator, We use the Leap-Frog scheme given by
(2.2)#\[\begin{split}\mathbf v_{1/2}&=\mathbf v_0 -\frac{\tau}{2} \mathbf M_v^{-1}\mathbf B^\top\mathbf p_0,\\
\mathbf p_{j+1}&=\mathbf p_{j} +\tau \mathbf M_p^{-1}\mathbf B\mathbf v_{j+1/2},\\
\mathbf v_{j+1/2}&=\mathbf v_{j-1/2} -\tau \mathbf M_v^{-1}\mathbf B^\top\mathbf p_j.\end{split}\]
It is well-known that this scheme is stable for timesteps \(\tau>0\) fulfilling
\[\tau^2 < \frac{4}{\sigma \left( \mathbf M_p^{-1}\mathbf B\mathbf M_v^{-1}\mathbf B^\top \right)}\]
where \(\sigma\) is the spectral radius.