Bibliography

2.7. Bibliography#

[AppeloGR20]

Daniel Appelö, Fortino Garcia, and Olof Runborg. Waveholtz: iterative solution of the helmholtz equation via the wave equation. SIAM Journal on Scientific Computing, 42(4):A1950–A1983, 2020. doi:10.1137/19M1299062.

[CKSW24]

Lorenzo Codecasa, Bernard Kapidani, Joachim Schöberl, and Markus Wess. Mass-lumped high-order cell methods for the time-dependent maxwell's equations. In Laurent Gizon, editor, Book of Abstracts, The 16th International Conference on Mathematical and Numerical Aspects of Wave Propagation (WAVES 2024), pp. 353 – 354. Berlin, Germany, 2024. Edmond MPDL. doi:10.17617/3.MBE4AA.

[KCSchoberl21]

Bernard Kapidani, Lorenzo Codecasa, and Joachim Schöberl. An arbitrary-order cell method with block-diagonal mass-matrices for the time-dependent 2D Maxwell equations. J. Comput. Phys., 433:Paper No. 110184, 20, 2021. doi:10.1016/j.jcp.2021.110184.

[Kny01]

Andrew V. Knyazev. Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM Journal on Scientific Computing, 23(2):517–541, 2001. doi:10.1137/S1064827500366124.

[NW24]

Lothar Nannen and Markus Wess. A krylov eigenvalue solver based on filtered time domain solutions. 2024. arXiv:2402.08515.

[Sto21]

Christiaan C. Stolk. A time-domain preconditioner for the helmholtz equation. SIAM Journal on Scientific Computing, 43(5):A3469–A3502, 2021. doi:10.1137/20M1359997.

[WKCS24]

Markus Wess, Bernard Kapidani, Lorenzo Codecasa, and Joachim Schöberl. Mass lumping the dual cell method to arbitrary polynomial degree for acoustic and electromagnetic waves. Journal of Computational Physics, pages 113196, 2024. doi:https://doi.org/10.1016/j.jcp.2024.113196.